

BUILDING DISEASE DATA RESOURCES BY END-TO-END RESEARCH DATA INTEGRATION

Xing Yi Woo

Senior PI and Head of Research Data Integration

Biomedical Datahub Division

BII Conference 2023

Confidential

(4)

Research Data Integration Group

Brandon Phua Analysis pipelines ISONET, RAPTOR Database

Nicola Wong
Analysis pipelines
Downstream analysis
leading to new
biological findings

Chew Zhen Yuan Spatial transcriptomics analysis workflow

Ayu Molecular Tumor Board reporting

Lau Mai Chan Spatial & Single-cell Omics Immunology

Jesslyn (IMCB)Drug dosing analysis

Benjamin Chen (IMCB)
Metadata curation, Omics analysis

End-to-end research data integration to build disease data resources of biobanks

Woo et al. BMC Medical Genomics (2019) 12:92 https://doi.org/10.1186/s12920-019-0551-2

BMC Medical Genomics

CANCER RESEARCH | RESOURCE REPORT

Open Access

Genomic data analysis workflows for tumors from patient-derived xenografts (PDXs): challenges and guidelines

Xing Yi Woo¹f, Anuj Srivastava¹f, Joel H. Graber²f, Vinod Yadav^{1,5}, Vishal Kumar Sarsani^{1,6}, Al Simons², Glen Beane², Stephen Grubb²f, Guruprasad Ananda¹f, Rangjibo Liu^{1,6}, Graco Stafford², Jeffrey H. Chuang³, Susan D. Airhart², R. Rishha Murth Kantudr¹, Losty Georoe¹ and Geol L. Sult² exp.

A Genomically and Clinically Annotated Patient-Derived Xenograft Resource for Preclinical Research in Non-Small Cell Lung Cancer

Xing Yi Woo¹, Anus Sirvastava¹, Philip C, Mack², Joel H, Graber², Briran J, Sanderson¹, Michael W, Lloyd³, Mandy Chen³, Sergii Domanskyi², Regina Gandour-Edwards², Rebekah A, Tsar², James Keck⁴, Mingshan Cheng⁴, Margardt Bundy², Emily L, Jocoy³, Jonathan W, Rioss², William Holland³, Stephen C, Grubb³, James G. Peterson³, Grace A, Stafford³, Carolyn Paisid³, Steven B, Neubauser³, R. Krisinah Murty Kautuuri, Joshy Geosge³, Allen K, Simons³, Marqaret Chavaree^{2,4}, Clifford G, Tepper², Neal Goodwin⁴, Susan D, Airhart³, Primo N, Lara Jir³, Thomas H. Openshaw³, Edison T, Liu³, David R, Gandder³, and Carol J, Bult⁴

nature

cancer

(#) Chieck for workers

G 2022. Published by The Company of Biologists Ltd | Disease Models & Mechanisms (2027) 15, dmmD49457, doi:10.1242/dmm/849457

RESOURCE ARTICLE

Genetically diverse mouse platform to xenograft cancer cells

Jennifer K. Sargent^{1,1}, Mark A. Warner^{1,1}, Benjamin E. Low¹, William H. Schott¹, Todd Hoffert¹, David Coloman¹, Xing Yi Woo^{2,1}, Todd Sheridan^{2,2}, Sonia Erattupuzha¹, Philipp P. Henrich¹, Viruk M. Philip¹, Jeffrey H. Chuang², Michael V, Wiles¹ and Muneer G. Hasham^{1,6}

CANCER RESEARCH | TUMOR BIOLOGY AND IMMUNOLOGY

Systematic Establishment of Robustness and Standards in Patient-Derived Xenograft Experiments and Analysis Esta

Yvorne A. Evrard¹, Anuj Srivastava², Jelena Randjelovic³, The NCI PDXNet Consortium, James H. Doroshow⁴, Dennis A. Dean II³, Jeffrey S. Morris⁵, and Jeffrey H. Chuang^{2,6}

ARTICLES

https://del.org/10.1038/s41588-020-00750-6

ODEN

Conservation of copy number profiles during engraftment and passaging of patient-derived cancer xenografts

e)

A human breast cancer-derived xenograft and organoid platform for drug discovery and precision oncology

 NAR Cancer

Published online 22 April 2022

doi: https://doi.org/10.1101/2022.10.26.512745

PDXNet portal: patient-derived Xenograft model, data, workflow and tool discovery

Soner Koc^{1,1}, Michael W. Lloyd^{2,1}, Jeffrey W. Grover^{2,1}, Nan Xiao¹, Sara Seepo¹, Sai Alashmi Subramanian¹, Manisha Ray¹, Christian Frech¹, John DiGiovanna¹, Phillip Webster¹, Steven Neuhauser², Anuj Srivastava², Xing Yi Woo², Brian J. Sanderson³, Brian White³, Paul Lott¹, Lacey E. Dobrolecki², Heldi Dowst³, PDXNet Consortium, Yvonne A. Evrad², Tiflany A. Wallace², ediffrey A. Moscow³, James H. Doroshow⁴, Nicholas Mitsiades³, Salma Kaochar³, Chong-xian Panti^{1,3}, Moon S. Chen⁴, Luis Carvajal-Carmona⁴, Alana L. Welm¹¹, Bryan E. Welm¹¹, Michael T. Lewis⁵, Ramaswamy Govindan^{1,2}, Li Ding³, Shunqiang Li^{1,2}, Meenhard Herlyn^{1,3}, Michael A. Davies^{1,4}, Jack Roth^{1,4}, Funda Meric-Bernstam⁴, Peter N. Robinson^{2,5}, Carol J. Buti^{1,5}, Brandi Davie-Dusenbery^{1,5}, Dennis A. Dean, Ili^{1,4} and Jeffrey H. Chuang^{2,1,4}

NATURE COMMUNICATIONS

ARTICLE

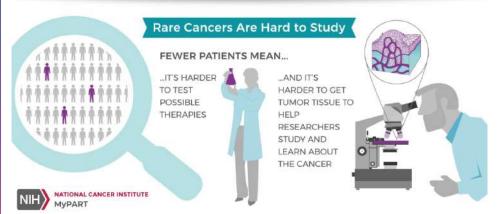
OPEN

Comprehensive characterization of 536 patientderived xenograft models prioritizes candidates for targeted treatment A pan-cancer PDX histology image repository with genomic and pathological annotations for deep learning analysis

Brian S White, Xing Yi Woo, Soner Koc, Todd Sheridan, Sceven B Neuhauser,

Shidan Wang, Yvonne A Evrard,
John David Landua, R Jay Mashi, Sherir R Davies, Bingliang Fang, Maria Gabriela Rack, Kurt-W Evans,
Matthew H Bailey Yeging Chen, Min Xiao, All Bubinstein, Ali Foroughi pour. Lacey Bitabeth Dobrolecki.
Maihl Fujita, Junya Fujimoto, Guanghus Xiao, Ryan C Fields, Jacqueline L Mudd, Xiaowei Xu,
Malinda G Hollingshead, Shananawaz Jiwani, PDXNet consortium, Brandi Davis-Dusenbery, Tiffany A Wallace,
Jeffrey A Moscow, James H Doroshow, Nicholas Mitsiades, Salma Kaochar, Chong-xian Pan, Moon S Chen Jr,

Lus G Carvajal-Carmona, Alana L Welm. Bryan E Welm, Ramaswamy Govindan, Shunqiang L,
Michael A Davies, Jack A Roth, Funda Moric-Bernstam, Yang Xie, Meenhard Herlyn, Li Ding, Michael T Lewis,


Carol J Bult, Dennis A Dean II,

Jeffrey H Chuang

In Review: Nature Cancer Resource

FUTURE: FUnctional precision medicine and Translational resource for RarE cancers

TO IMPROVE OUTCOMES IN RARE CANCERS

We need...

- Biomarkers to predict patient response or resistance to treatments
- Novel therapeutics effective for patients who do not respond to existing options

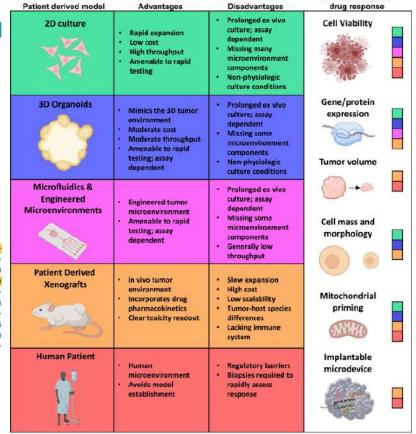
We use...

 A functional precision oncology approach with multimodal data analysis and integration

Unmet need: Lack effective therapies, disproportionately poor outcomes

Perspective

Functional precision oncology: Testing tumors with drugs to identify vulnerabilities and novel combinations


Anthony Letai, 1,2 Patrick Bhola, 2,3 and Alana L. Welm4,*

- ¹Dana-Farber Cancer Institute, Boston, MA 02215, USA
- ²Harvard Medical School, Boston, MA 02215, USA
- 3Brigham and Women's Hospital, Boston, MA 02115, USA
- ⁴Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
- *Correspondence: alana.welm@hci.utah.edu https://doi.org/10.1016/j.ccell.2021.12.004

SUMMARY

Functional precision medicine is a strategy whereby live tumor cells from affected individuals are directly perturbed with drugs to provide immediately translatable, personalized information to guide therapy. The heterogeneity of human cancer has led to the realization that personalized approaches are needed to improve treatment outcomes. Precision oncology has traditionally used static features of the tumor to dictate which therapies should be used. Static features can include expression of key targets or genomic analysis of mutations to identify therapeutically targetable "drivers." Although a surprisingly small proportion of individuals derive clinical benefit from the static approach, functional precision medicine can provide additional information regarding tumor vulnerabilities. We discuss emerging technologies for functional precision medicine as well as limitations and challenges in using these assays in the clinical trials that will be necessary to determine whether functional precision medicine can improve outcomes and eventually become a standard tool in clinical oncology.

- Generate dynamic, functional data on tumor vulnerabilities
- Accompanied by data of genomic aberrancies e.g. altered signaling pathways

Readouts to assess

"Rare" Cancer Functional Precision Oncology with Multimodal Data Analysis and Integration

LIVES

GROWTH, ENHANCING

CREATING

Valerie Yang (NCCS, IMCB) data collection. cancer biology

Rare Cancer Patient with turnour and blood samples collected at

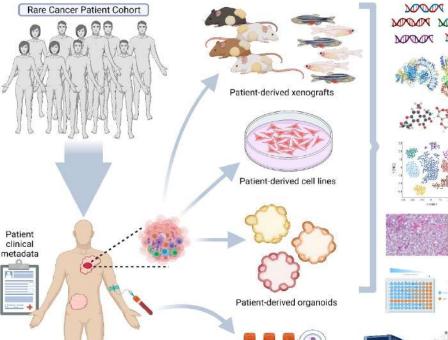
multiple sites and

timepoints

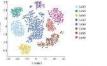
Johnny Ong (NCCS)

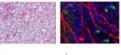
Toh

Qingfeng Chen (IMCB) Humanized mouse Models

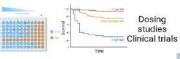

Edward Chow (CSI) Drua screening and

Zheng Ser (IMCB, Radek's group)





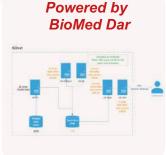
profiling


Metabolomic profiling

Single cell sequencing

Spatial imaging

Systematic workflows Integrative analysis Structured databases Data visualization

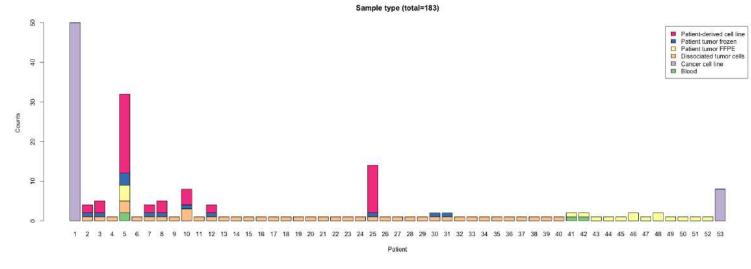


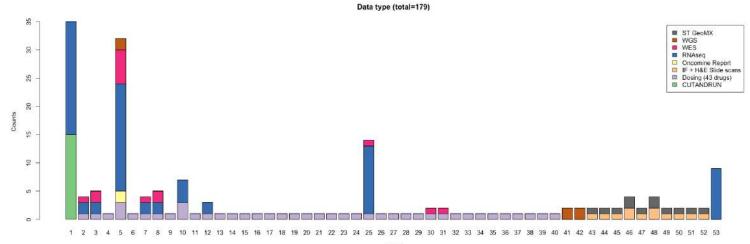
Mechanisms of sensitivity/resistance

Precision medicine

Patient stratification

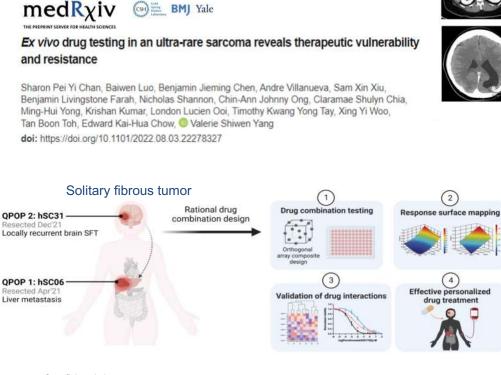
Biomarker discovery

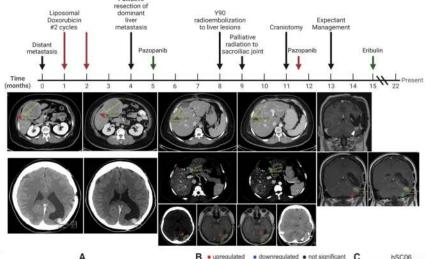

Liquid biopsies

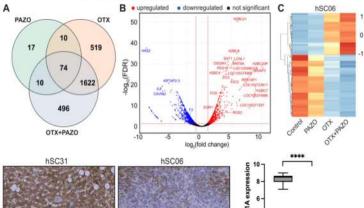


Confidential

Growing data resource



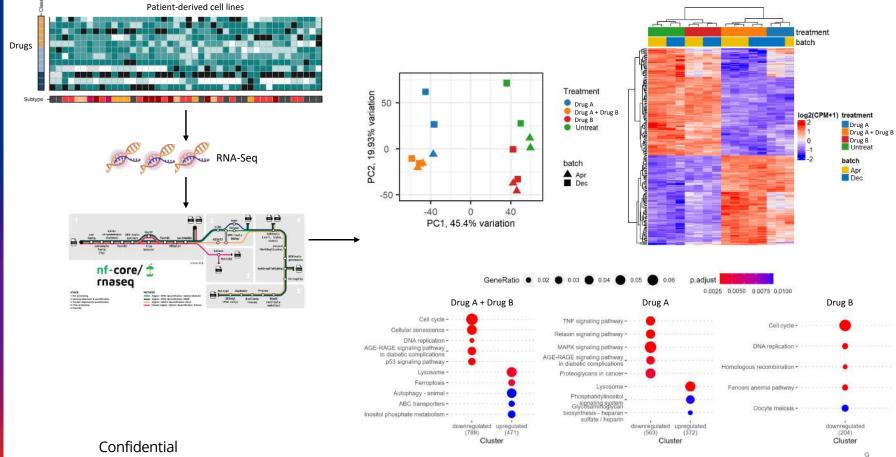




FPM shows promise as a N-of-1 treatment approach (trial)

hSC31

hSC06



FPM by drug screening and biomarker discovery

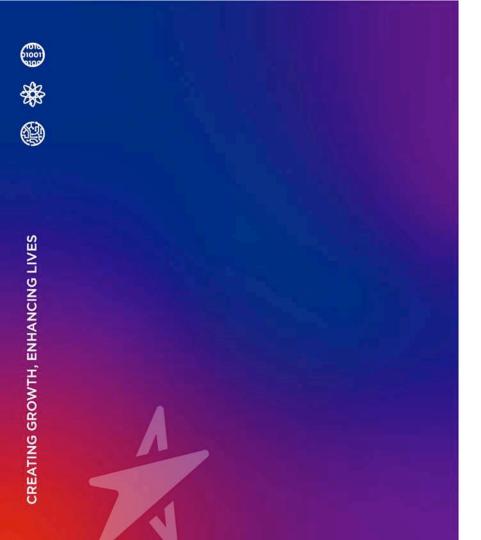
Future

Structural/functional predictions of cancer mutations

2. Cancer Omics Platform

TAM WAI LEONG

Brain-Body Initiative



HAN WEIPING

MICHAEL MEANEY

Non-alcoholic fatty liver disease

THANK YOU

www.a-star.edu.sg

woo_xing_yi@bii.a-star.edu.sg